
Online Appendix for
SABIO: An Implementation of MIP and CP for

Interactive Soccer Queries

Robinson Duque1, Juan Francisco Dı́az1, and Alejandro Arbelaez2

1 Universidad del Valle, Cali, Colombia
{robinson.duque, juanfco.diaz}@correounivalle.edu.co

2 Insight Centre for Data Analytics, University College Cork, Ireland
{alejandro.arbelaez}@insight-centre.org

General Description

Soccer fans usually have questions related to their favourite teams and most
of the time they are subject to media speculations that are sometimes proved
wrong by either fans who can find contradicting scenarios using ink and paper
or by people with certain skills to create models and programs. We attempt to
present a general MIP model that can be used to simulate different scenarios and
problems such as the elimination problem [1,2,3,4], the score vector problem [5],
promotion and relegation [3,6], etc. where fans can combine four different kind
of queries to analyze soccer:

– Game Results. These kind of queries let users impose constraints about par-
ticular matches in any fixture. (e.g., Barcelona ends in a tie with R.Madrid).

– Position in Ranking. These kind of queries let users impose constraints about
the positions of the teams at the end of a tournament (e.g., R.Madrid will
be in a better position than 3).

– Relative Position. These kind of queries let users impose constraints about
the positions of two teams (e.g., R.Madrid will be in a worse position than
Barcelona).

– Final Points. These kind of queries let users impose constraints about the
expected final points of the teams at the end of a tournament (e.g., Barcelona
score at the end of the tournament is 75).

Appendix A MIP Model for Soccer Queries

In this appendix, we describe a MIP formulation for soccer competitions. In the
following we describe the variables and notations used in our model, we differen-
tiate between five categories of variables: basic formulation, game result queries,
position in ranking queries, relative position queries and final point queries.
While a few of these variables had already been used in the literature [7,8,9],
we recall that many variables had to be added to formulate certain features of
our model, e.g., flexibility of single and double round-robin competition.

Basic Formulation Variables: these variables capture basic information to
formulate a model for soccer competitions.

– n: number of teams in the competition;
– T : set of team indexes in the competition;
– i, j: team indexes, such that (i, j ∈ T);
– pi: initial points of team i. If i has not played any games, then pi = 0;
– gij : number of remaining games between a pair of teams i and j;
– wij : number of games that team i wins over team j ;
– tij : number of games that team i ties with team j ;
– lij : number of games that team i loses over team j;
– tpi: total points of team i at end of the competition;
– posi: position of team i at the end of the competition;
– worstPosi: upper bound for posi;
– bestPosi: lower bound for posi;

Game Result Queries: we use this set of variables to represent user defined
assumptions of the remaining games, e.g., Barcelona ends in a tie with R. Madrid.

– Q: set of game result queries for pairs of teams (i, j). Q is defined as a set
of triples nqa = (wcij , tcij , lcij) and 0 ≤ a ≤ |Q|;

– wcij : minimum number of games that team i wins over team j;
– tcij : minimum number of games that team i ties with team j;
– lcij : minimum number of games that team i loses over team j;

Position in Ranking Queries: we use this set of variables to represent queries
of teams at the end of the competition.

– P : set of possible position in ranking queries, defined as a set of triples
npb = (i, opri, ptni) and 0 ≤ b ≤ |P |;

– opri: logical operator (opri ∈ {<,≤, >,≥,=}) to constrain team i;
– ptni: denoting the expected position for team i; 1 ≤ ptni ≤ n;
– L: denoting the set of team indexes included in all the triples npb ∈ P such

that npb = (i, opri, ptni) and i ∈ L and L ⊆ T ;
– geqij : boolean variable indicating if team j has greater or equal total points

as i: if tpj ≥ tpi then geqij = 1; otherwise geqij = 0 (∀i ∈ L,∀j ∈ T);
– eqij : boolean variable indicating if two different teams i and j tie in points

at the end of the competition: if tpj = tpi and i 6= j then eqij = 1; otherwise
eqij = 0 (∀i ∈ L,∀j ∈ T).

Relative Position Queries: we use these variables to represent queries about
relative positions between two teams, e.g., Barcelona will be in a better position
than R. Madrid.

– R: set of possible relative position queries defined as a set of triples nrc =
(i, opij , j) and 0 ≤ c ≤ |R|;

– opij : denoting a logical operator (opij ∈ {<,≤, >,≥,=}) to constrain a pair
of teams i and j.

Final Point Queries: (also known as score queries) we use these variables for
queries about the final points of the teams, e.g., Barcelona scores at the end of
the competition 75 points.

– S: set of possible final point queries defined as a set of tuples nsd = (i, si)
and 0 ≤ d ≤ |S|;

– si: denoting the wanted final points of team i.

A.1 MIP Model Formulation

Basic Soccer Model: Constraints (1), (2), and (3) describe a basic soccer model
with a valid (win, tie, lose) assignment for every game between a pair of teams
(i, j) with gij games left to play. We recall that gij must be equal to gji, the
games a team i wins over team j (i.e., wij) must be also equal to the games
team j loses over team i (i.e., lji). Respectively, tij = tji, and lij = wji. In this
scenario, a team can get (3 points – win, 1 point – tie, 0 points – loss) in every
game, then the total number of points of team i can be calculated by adding its
initial points pi and the points obtained against every other team. Depending on
the competition and the current state of the tournament gij is set to 0 (no games
left between the teams), 1 or 2. Unlike previous work in [9] which is limited to
single round-robin competitions, this representation is flexible to represent both
single and double round-robin competitions.

wij + tij + lij = gij ∀i,j∈T ∧ gij ≥ 0 (1)

wij = lji ∧ tij = tji ∧ lij = wji ∀i,j∈T (2)

tpi = pi +

n∑
j=1,j 6=i

3 · wij + tij ∀i,j∈T (3)

Game Results Queries: our model will allow users to include assumptions of
the outcome of remaining games in the competition, e.g., team i wins over team
j in at least one of the two remaining games between the two teams. Taking this
into account we extend our basic model with constraint (4).

(wcij + tcij + lcij ≤ gij) ∀nqa ∈ Q ∧ nqa = (wcij , tcij , lcij)

(wij ≥ wcij) ∧ (tij ≥ tcij) ∧ (lij ≥ lcij) ∀nqa ∈ Q ∧ nqa = (wcij , tcij , lcij)

wcij , tcij , lcij ≥ 0

(4)

Position in Ranking Queries: A position in ranking query involves a set of
constrained teams L ⊆ T and indicates whether a given team can be above,
below, or at a given position ptni, constraint (5) depicts the five possibilities:

∀npb ∈ P ∧ npb = (i, opri, ptni)

posi = ptni, if opri is =

posi ≤ ptni − 1, if opri is <

posi ≤ ptni, if opri is ≤
posi ≥ ptni + 1, if opri is >

posi ≥ ptni, if opri is ≥

(5)

Constraint (6) indicates the number of teams j that finish the competition
with better or equal points as team i. This number (i.e., worstPosi) is the upper
bound for posi as expressed in constraint (8).

geqij =

{
1, if tpj ≥ tpi

0, otherwise
∀j ∈ T ∧ ∀i ∈ L

worstPosi =

n∑
j=1

geqij ∀j ∈ T ∧ ∀i ∈ L

(6)

Constraint (7) indicates whether teams i and j (i 6= j) end up with the same
points at the end of the competition. The lower bound for posi (i.e., bestPosi)
can be computed by subtracting from the upper bound, the total teams in the
same position as team i.

eqij =

{
1, if tpj = tpi and i 6= j

0, otherwise
∀j ∈ T ∧ ∀i ∈ L

bestPosi = worstPosi −
n∑

j=1,j 6=i

eqij ∀j ∈ T ∧ ∀i ∈ L

(7)

Finally, constraint (8) sets the bounds for the position of team i and constraint
(9) indicates that the positions for two teams must be different.

bestPosi ≤ posi ≤ worstPosi ∀i ∈ L (8)

(posi 6= posj) ∀i, j ∈ L ∧ i 6= j (9)

Relative Position Queries: this queries indicate whether a given team i will
be above, below, or equal to another team j at the end of the tournament and
constraint (10) depicts the five queries. In this particular case we use tpi and tpj .
We consider that two teams i and j might tied up in the same position if they
have the same points at the end of the competition. We recall that we don’t use
posi and posj due to constraint (9) which indicates that two teams must have
different positions at the end of the competition.

∀nrc ∈ R ∧ nrc = (i, opij , j)

tpi = tpj , if opij is =

tpi ≤ tpj − 1, if opij is <

tpi ≤ tpj , if opij is ≤
tpi ≥ tpj + 1, if opij is >

tpi ≥ tpj , if opij is ≥

(10)

Final Point Queries: To guarantee a set S of final point queries, the model
should include the linear constraints from (11). Notice that the score si should
have a lower bound of pi and an upper bound of all the possible points if team
i wins all its the remaining games gij :

(tpi = si) ∀nsd ∈ S ∧ nsd = (i, si)

pi ≤ si ≤ pi + 3 ·
n∑

j=1,j 6=i

gij ∀nsd ∈ S ∧ nsd = (i, si)
(11)

Objective Function: Users might be interested in either minimizing or max-
imizing the total points for a given team as depicted in (12):

maximize: tpi (i ∈ T) (12)

References

1. Schwartz, B.L.: Possible winners in partially completed tournaments. SIAM Review
8(3) (1966) 302–308

2. Hoffman, A., Rivlin, T.: When is a team “mathematically” eliminated?, Princeton,
NJ, Princeton Symposium on Mathematical Programming (1967) 391–401

3. Kern, W., Paulusma, D.: The new fifa rules are hard: complexity aspects of sports
competitions. Discrete Applied Mathematics 108(3) (2001) 317–323

4. Bernholt, T., Gälich, A., Hofmeister, T., Schmitt, N.: Football elimination is hard
to decide under the 3-point-rule. In: MFCS. (1999) 410–418

5. Pálvölgyi, D.: Deciding soccer scores and partial orientations of graphs. Acta Univ.
Sapientiae, Math 1(1) (2009) 35–42

6. Kern, W., Paulusma, D.: The computational complexity of the elimination problem
in generalized sports competitions. Discrete Optimization 1(2) (2004) 205–214

7. McCormick, S.T.: Fast algorithms for parametric scheduling come from extensions
to parametric maximum flow. Operations Research 47(5) (1999) 744–756

8. Wayne, K.D.: A new property and a faster algorithm for baseball elimination. SIAM
Journal on Discrete Mathematics 14(2) (2001) 223–229

9. Ribeiro, C.C., Urrutia, S.: An application of integer programming to playoff elimina-
tion in football championships. International Transactions in Operational Research
12(4) (2005) 375–386

